Don't miss

Replay


LATEST SHOWS

EYE ON AFRICA

Seven African countries' economies at risk over Brexit decision

Read more

THE DEBATE

Britain votes out: What next?

Read more

#TECH 24

The 'fintech' revolution

Read more

FRANCE IN FOCUS

A certified 'palace': How hotels strive for excellence

Read more

#THE 51%

In her own image: Women in Art

Read more

REPORTERS

World War I: When northern France was on German time

Read more

REVISITED

Video: Ugandan city still scarred by Lord's Resistance Army atrocities

Read more

MEDIAWATCH

#Brexit sparks a storm on social media

Read more

BUSINESS DAILY

Markets, pound plunge on Brexit vote

Read more

SCIENCE

In major breakthrough, scientists detect gravitational waves theorised by Einstein

© Thomas Coex, AFP | Israeli Doctor Roni Grosz, head of The Albert Einstein Archives at the Hebrew University of Jerusalem, holds up Einstein’s documents on February 11, 2016

Text by NEWS WIRES

Latest update : 2016-02-12

In an announcement that electrified the world of astronomy, scientists said Thursday that they have finally detected gravitational waves, the ripples in the fabric of space-time that Einstein predicted a century ago.

Some scientists likened the breakthrough to the moment Galileo took up a telescope to look at the planets.

The discovery of these waves, created by violent collisions in the universe, excites astronomers because it opens the door to a new way of observing the cosmos. For them, it's like turning a silent movie into a talkie because these waves are the soundtrack of the cosmos.

"Until this moment we had our eyes on the sky and we couldn't hear the music," said Columbia University astrophysicist Szabolcs Marka, a member of the discovery team. "The skies will never be the same."

An all-star international team of astrophysicists used a newly upgraded and excruciatingly sensitive $1.1 billion instrument known as the Laser Interferometer Gravitational-Wave Observatory, or LIGO, to detect a gravitational wave from the distant crash of two black holes, one of the ways these ripples are created.

To make sense of the raw data, the scientists translated the wave into sound. At a news conference, they played what they called a "chirp" - the signal they heard on Sept. 14. It was barely perceptible even when enhanced.

Some physicists said the finding is as big a deal as the 2012 discovery of the subatomic Higgs boson, sometimes called the "God particle." Some said this is bigger.

"It's really comparable only to Galileo taking up the telescope and looking at the planets," said Penn State physics theorist Abhay Ashtekar, who wasn't part of the discovery team. "Our understanding of the heavens changed dramatically."

Gravitational waves, first theorized by Albert Einstein in 1916 as part of his theory of general relativity, are extraordinarily faint ripples in space-time, the hard-to-fathom fourth dimension that combines time with the familiar up, down, left and right. When massive but compact objects like black holes or neutron stars collide, they send gravity ripples across the universe.

Scientists found indirect proof of the existence of gravitational waves in the 1970s - computations that showed they ever so slightly changed the orbits of two colliding stars - and the work was honored as part of the 1993 Nobel Prize in physics. But Thursday's announcement was a direct detection of a gravitational wave.

And that's considered a big difference.

‘The soundtrack of the universe’

"It's one thing to know soundwaves exist, but it's another to actually hear Beethoven's Fifth Symphony," said Marc Kamionkowsi, a physicist at Johns Hopkins University who wasn't part of the discovery team. "In this case we're actually getting to hear black holes merging."

Gravitational waves are the "soundtrack of the universe," said team member Chad Hanna of Pennsylvania State University.

Detecting gravitational waves is so difficult that when Einstein first theorized about them, he figured scientists would never be able to hear them. Einstein later doubted himself and even questioned in the 1930s whether they really do exist, but by the 1960s scientists had concluded they probably do, Ashtekar said.

In 1979, the National Science Foundation decided to give money to the California Institute of Technology and the Massachusetts Institute of Technology to come up with a way to detect the waves.

Twenty years later, they started building two LIGO detectors in Hanford, Washington, and Livingston, Louisiana, and they were turned on in 2001. But after years with no luck, scientists realized they had to build a more advanced detection system, which was turned on last September.

"This is truly a scientific moonshot and we did it. We landed on the moon," said David Reitze, LIGO's executive director.

The new LIGO in some frequencies is three times more sensitive than the old one and is able to detect ripples at lower frequencies that the old one couldn't. And more upgrades are planned.

(AP)

Date created : 2016-02-11

  • SCIENCE

    Speedy neutrino has scientists questioning Einstein

    Read more

COMMENT(S)