Don't miss

Replay


LATEST SHOWS

ACROSS AFRICA

African nations need to prepare for potential return of thousands of jihadists

Read more

EYE ON AFRICA

DR Congo former child soldiers awarded $10 mn in damages in landmark ruling

Read more

MEDIAWATCH

Website roots out "Rotten Apples"

Read more

THE WORLD THIS WEEK

Putin's press conference, Alabama election, One Planet Summit, Brexit Phase II, Disney & Fox

Read more

#TECH 24

WorldRemit: Helping migrant workers send money back home

Read more

FOCUS

The challenges awaiting the new leader of South Africa's ANC

Read more

THE INTERVIEW

Bangladeshi PM calls violence in Myanmar 'unacceptable'

Read more

DOWN TO EARTH

Was 2017 the worst year for the environment?

Read more

ENCORE!

Rhiannon Giddens strikes out on her 'Freedom Highway'

Read more

Business

Disease-causing gene removed from human embryos in world first

© OHSU | This sequence of images shows the development of embryos after co-injection of a gene-correcting enzyme and sperm from a donor with a genetic mutation known to cause hypertrophic cardiomyopathy.

Text by NEWS WIRES

Latest update : 2017-08-03

Altering human heredity? In a first, researchers safely repaired a disease-causing gene in human embryos, targeting a heart defect best known for killing young athletes — a big step toward one day preventing a list of inherited diseases.

In a surprising discovery, a research team led by Oregon Health and & Science University reported Wednesday that embryos can help fix themselves if scientists jump-start the process early enough.

It's laboratory research only, nowhere near ready to be tried in a pregnancy. But it suggests that scientists might alter DNA in a way that protects not just one baby from a disease that runs in the family, but his or her offspring as well. And that raises ethical questions.

"I for one believe, and this paper supports the view, that ultimately gene editing of human embryos can be made safe. Then the question truly becomes, if we can do it, should we do it?" said Dr. George Daley, a stem cell scientist and dean of Harvard Medical School. He wasn't involved in the new research and praised it as "quite remarkable."

"This is definitely a leap forward," agreed developmental geneticist Robin Lovell-Badge of Britain's Francis Crick Institute.

Today, couples seeking to avoid passing on a bad gene sometimes have embryos created in fertility clinics so they can discard those that inherit the disease and attempt pregnancy only with healthy ones, if there are any.

Gene editing in theory could rescue diseased embryos. But so-called "germline" changes — altering sperm, eggs or embryos — are controversial because they would be permanent, passed down to future generations. Critics worry about attempts at "designer babies" instead of just preventing disease, and a few previous attempts at learning to edit embryos, in China, didn't work well and, more importantly, raised safety concerns.

In a series of laboratory experiments reported in the journal Nature, the Oregon researchers tried a different approach.

They targeted a gene mutation that causes a heart-weakening disease, hypertrophic cardiomyopathy, that affects about 1 in 500 people. Inheriting just one copy of the bad gene can cause it.

The team programmed a gene-editing tool, named CRISPR-Cas9, that acts like a pair of molecular scissors to find that mutation — a missing piece of genetic material.

Then came the test. Researchers injected sperm from a patient with the heart condition along with those molecular scissors into healthy donated eggs at the same time. The scissors cut the defective DNA in the sperm.

Normally cells will repair a CRISPR-induced cut in DNA by essentially gluing the ends back together. Or scientists can try delivering the missing DNA in a repair package, like a computer's cut-and-paste program.

Instead, the newly forming embryos made their own perfect fix without that outside help, reported Oregon Health & Science University senior researcher Shoukhrat Mitalipov.

We all inherit two copies of each gene, one from dad and one from mom — and those embryos just copied the healthy one from the donated egg.

"The embryos are really looking for the blueprint," Mitalipov, who directs OHSU's Center for Embryonic Cell and Gene Therapy, said in an interview. "We're finding embryos will repair themselves if you have another healthy copy."

It worked 72 percent of the time, in 42 out of 58 embryos. Normally a sick parent has a 50-50 chance of passing on the mutation.

Previous embryo-editing attempts in China found not every cell was repaired, a safety concern called mosaicism. Beginning the process before fertilization avoided that problem: Until now, "everybody was injecting too late," Mitalipov said.

Nor did intense testing uncover any "off-target" errors, cuts to DNA in the wrong places, reported the team, which also included researchers from the Salk Institute for Biological Studies in California and South Korea's Institute for Basic Science. None of the embryos was allowed to develop beyond eight cells, a standard for laboratory research.

Genetics and ethics experts not involved in the work say it's a critical first step — but just one step — toward eventually testing the process in pregnancy, something currently prohibited by U.S. policy.

"This is very elegant lab work," but it's moving so fast that society needs to catch up and debate how far it should go, said Johns Hopkins University bioethicist Jeffrey Kahn.

And lots more research is needed to tell if it's really safe, added Britain's Lovell-Badge.

"What we do not want is for rogue clinicians to start offering treatments" that are unproven like has happened with some other experimental technologies, he stressed.

Among key questions: Would the technique work if mom, not dad, harbored the mutation? Is repair even possible if both parents pass on a bad gene?

Mitalipov is "pushing a frontier," but it's responsible basic research that's critical for understanding embryos and disease inheritance, noted University of Pittsburgh professor Kyle Orwig.

In fact, Mitalipov said the research should offer critics some reassurance: If embryos prefer self-repair, it would be extremely hard to add traits for "designer babies" rather than just eliminate disease.

"All we did is un-modify the already mutated gene."

(AP)

Date created : 2017-08-03

COMMENT(S)